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Scaling in force spectroscopy of macromolecules
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We use molecular dynamics to determine the force needed to rupture a chain molecule being stretched at
constant loading rate and temperature. When all energy bonds of the molecule are identical, we find that the
force F depends on the pulling rate  and temperature T according to F ~ const—T""3|In(r/T)|">. When a single
weak bond is introduced, this result is modified to F~ const—7?3[In(r/T)|*. This scaling, which is model
independent, can be used with experiment to quantitatively extract relevant microscopic parameters.
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I. INTRODUCTION

Many essential biological processes for life depend on the
reaction of various bonds and/or molecules to an applied
force. One such example is how Leukocytes recognize in-
vading pathogenic organisms in blood vessels [1]. Atomic
force microscope (AFM) [2,3] and biomembrane force probe
[4-6] (BFP) are now being used to determine the energy
landscape of these complex molecules. In the former experi-
ment, a molecule is attached to the tip of the AFM while a
counter-molecule is held at the surface. A specific bond [7]
between these two molecules is formed when the tip is
brought close to the surface. By removing the tip from the
surface at a constant loading rate and recording the most
likely force at which the specific bond breaks, a complete
spectrum of force versus loading rate is obtained.

Experimentally, the force is seen to increase approxi-
mately with the logarithm of velocity for about 3 or 4 de-
cades. This behavior can be explained in terms of a minimal
model [8] in which specific bonds are modeled by a
Lennard-Jones potential while the surrounding environment
of the bond is described by a stochastic force. The breaking
of the bond then takes place through thermal fluctuations,
which depends strongly on the energy barrier [9]. The poten-
tial energy of the bond added to the energy associated with
the external force (the energy of the cantilever) accounts for
the energy landscape [10]. An approximate solution of the
model reveals that the energy barrier of the landscape de-
creases linearly with the applied force. This linear depen-
dence then results in a linear force spectrum.

There is a need to expand the minimal model and to per-
form a detailed theoretical study of the breakup process. In
particular, it was recently shown that the linear dependence
of the energy barrier on the applied force is rarely valid in
similar cases where an interplay between thermal fluctua-
tions and a time-dependent energy barrier exists [11-13].
The linear logarithmic behavior must be replaced by a
In*3 T/r dependence, where T is temperature and r is the
loading rate. Since this behavior is observed in systems as
varied as Josephson junctions [ 13], friction of an AFM tip on
a surface in the creep regime [12,14], and possibly spin
glasses [15], it raises the question of the universality of this
result and of its applicability to the breaking of biological
molecules.
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We first use molecular dynamics to study the breaking
rate of chain molecule held at a fixed length. We find that the
breakup is a thermally activated process and extract the en-
ergy barrier and attempt frequency. Two situations are exam-
ined. In the first, the chain is composed of identical Lennard-
Jones atoms with periodic boundary conditions. We find that
the energy barrier AE~ (s.—s)°, where s is the strain of the
chain and s, is the critical strain, the strain at which breakup
would occur at 7=0. This differs from the universality
classes described above, and arises from specific boundary
conditions. A more realistic situation is to consider the chain
of atoms attached to an harmonic spring representing the
membrane of a BFP setup, or to be composed of links with
different forces. In this situation, the energy barrier AE
~ (s,—s)*?, within the ramped creep universality class. A
non-linear vanishing of the energy barrier has been observed
in other model biological systems [16,17], and a similar scal-
ing form has also been proposed by Dudko ez al. [18].

These results are then used to discuss the dynamical
breakup. We use a quasistatic approximation, in which the
energy barrier AE(t) ~ (s.—s(t))?. We show that when the
tension is increased at a constant rate, the strain s at which
the system ruptures scales with the temperature 7" and the
loading rate r=ds/dt as

(s —s.) ~ T In(xT/r)]V?, (1)

where y=3 for identical ring molecule and y=3/2 for BFP
experiments. These results are confirmed by a direct molecu-
lar dynamics study of breaking on a simplified BFP set-up.
Even though the rate of elongation that can be simulated
using molecular dynamics is unrealistically high, these re-
sults validate the quasistatic approximation. Our results can
thus be applied to experimentally useful range of stretching
rate. In particular, this scaling is based on physical arguments
and is universal, the detailed form of the potential enters only
through the numerical constant «.

II. MODEL DESCRIPTION AND SIMULATION

We model the molecule being stretched by a one-
dimensional chain of N atoms, described by the position x;
(i=1,N). The atoms interact together through first-neighbor
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FIG. 1. (Color online) Schematic representation of stretched
chain models. In (a), a periodic chain with similar atoms is pre-
sented in its local equilibrium configuration: all atoms stretch by the
same amount S. In (b) we show a system made by a weak bond and
a spring. The spring mimics the membrane of a BFP while the bond
models the relevant weak bond of a complex molecule. At meta-
stable equilibrium, a fraction f of the stretched length S of the
system extends the weak bond.

interactions only. For specificity, we choose the Lennard-
Jones potential (although the exact form of the interaction is
not essential)

a 12 a 6
U(Ax):e[(A—x> —2(A—x”, (2)

where € is the binding energy, a is the interatomic spacing,
and Ax is the distance between the atoms. The dynamics of
this system is obtained by simple Langevin equations. The
atoms are immersed in a solvent which acts as a friction
force (—yx;) and a random force &(¢) on each atom i. The
intensity of the random force is given by the fluctuation-
dissipation theorem

(& &t + 1) = 8,;6(7)2M ykgT, (3)

where M and kp are the mass and Boltzmann’s constant,
respectively, and the angular brackets denote an average. The
equation of motion of atom i can now be written as

d’x;
M3+ Moyt Flxp= ) + Flag —x) = 600, ()

where F(x) is the force computed from the potential. Two
different situations can then be considered.

(1) Periodic chain: The simplest system to study is a
periodic chain with N similar atoms, as depicted in Fig. 1(a).
Periodic boundary conditions are imposed with the minimum
image convention [19] so that the probability of rupture is
equal at each point of the chain. The length of the box is
fixed at L=N(a+S) and initially all bonds are strained by an
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equal amount S. This setup corresponds to a metastable con-
figuration since the total force on each atom is zero. There-
fore, the average strain on each bond stays the same along
the simulation until rupture occurs. In that case the broken
bond stretches gradually to a+NS while the strain on the
others N—1 bonds vanishes such that the sum of all bond
length is conserved at all times. A similar system, at a fixed
length, was already studied by Oliveira [20]. It was found
that rupture usually occurred at a single bond through ther-
mal fluctuations.

(2) Attached chain: A more realistic situation is when
different bonds (corresponding to different values of €) are
present in the molecule, with one end of the chain (atom i
=N) strongly attached to a surface and the other (atoms i
=1) to the tip of an AFM or the membrane of BFP. The
cantilever of the AFM is modelled by introducing a new
atom x,, linked to the first atom of the chain by an harmonic
spring (with spring constant k;,), leading to an additional term
in the potential energy

Up(x, = x0) = 3k,,(x) = x0 — ). (5)

Of particular interest for BFP is when one of the bonds
(between atoms i~ and i"+ 1) is much weaker than the others,
and the spring constant less stiffer than the weak bond. De-
fining €(i) as the binding energy between atoms i and i+1,
and representing the weak bond by e=€(i"), the specific situ-
ation that we consider is thus

e(i))e>1 fori=1,i"-1

(i) =€

ei))e>1 fori=i"+1,N-1. (6)

In this case, only the weak bond and the spring plays a role
in rupture (the 2 subchains formed by the strong links are
essentially undisturbed). Therefore to speed up simulational
time we ignore these strong bonds [see Fig. 1(b)]. The atoms
at the extremity of the setup are held fixed in place.

Dynamical breakup of the chains: The ultimate goal of a
molecular dynamic simulation would be to compute the
mean breaking force for chains subjected to strain rates span-
ning several orders of magnitude (typical experimental time
scales range from the millisecond to the minute). However,
due to prohibitively long computational times [21], molecu-
lar dynamics can only probe breaking for a very short range
of loading rates. We thus proceed in two steps, we first cal-
culate the energy barrier for a fixed chain length and show
that this result can be used to understand the dynamical
breakup. The strain s of the chain is thus fixed (through the
boundary conditions) and the time 7(s) necessary for breakup
is obtained.

The dynamics of atoms is given by solving the set of Eq.
(4) using the velocity Verlet algorithm [19,22]. These are
solved numerically for a fixed length of the system (fixed
strain) until a bond breaks irreversibly. In order to determine
whether rupture has occurred irreversibly, we compute the
average time required for the largest bond length of the chain
to reach different values d. Thermal fluctuations tend to in-
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crease d against the restoring force of the bonds. There is a
given value of d, which we call d., below which an increase
of the largest bond takes a large amount of time. When rup-
ture occurs (at d,) the largest bond increases almost instan-
taneously since the atoms which are being separated do not
resist anymore. In this situation, the resultant force comes
from the other bonds which are relaxing to their equilibrium
length, thus increasing the length of the largest bond. Within
this picture, the average point of rupture d,. is well defined.

The mean time of rupture 7 can be computed by knowing
the number of chains N(7) that have not ruptured at time ¢. If
there are initially N, chains, the time evolution is N(z)
=N, exp(—t/7). Unless otherwise stated, we use N,=800 in
this paper. If breakup is thermally activated, the time for
breakup follows an Arrhenius form

T(S) — Q—I(S)eAE(s)/kBT’ (7)

where the inverse of the prefactor, (s), is the attempt
breakup frequency and AE(s) is the effective potential energy
barrier (i.e., the amount of the energy the heat bath has to
supply in order for rupture to occur). The rate of breaking of
the chain R(s)=1/7(s).

Simulations are performed in reduced units. Energy is
written in terms of €, length is given in terms or a and time
is given in units of the smallest period of phonon oscillations
7,=27/12+/(2€/ Ma?). For simplicity, the mass of each atom
is chosen to be one while the friction constant is tuned to
v=0.25(27/7,). Below we present results from simulation.
We obtain 7(s) for various temperatures, from which both the
energy barrier AE(s) and the oscillation frequency (s) can
be obtained. The behavior of AE(s) as a function of the strain
is particularly important since it appears as an exponential
factor in the thermal rate formula [Eq. (7)]. At low strain, we
expect linear behavior, i.e., AE(s)/AE(0)=1+O(s). At some
critical strain value s, the energy barrier vanishes and the
chain is naturally unstable. Close to s., we expect power-law
behavior AE(s)~ (s.—s)?.

A. Numerical simulations: Attached chain

This model corresponds to Fig. 1(b). The weak bond is
defined by e=1 and a=1, such that its stiffness (computed
from the Lennard-Jones potential) is k=72€/a>. The equilib-
rium length of the harmonic spring is a and its stiffness is
k,=10"*k. Figure 2(a) shows the dependence of the loga-
rithm of 7 on the inverse of temperature for several values of
strain. In agreement with Eq. (7), this dependence is linear,
showing that breaking is a thermally activated process,
mostly determined by the binding energy e and the spring
constant k;,. The energy barriers as a function of the strain s
are shown in the inset of Fig. 2(a) and demonstrate the exis-
tence of a critical value of the strain s.. Close to s., the
energy barrier scales as AE~ (s—s,)?, as shown in Fig. 2(b).
The best fit yields values of s,.=370+10 and y=~1.5+0.1; the
large uncertainty comes from having to determine two pa-
rameters from the fit, together with the constraint that power
law behaviors is observed only for strains sufficiently close
to the critical strain. The prefactor is given in the inset of Fig.
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FIG. 2. (Color online) Simulational results for the weak
+harmonic chain. In (a) the dependence of breakup time on the
temperature and strain is presented. The energy barrier as a function
of the strain is shown in the inset. In (b) we show the behavior of
the energy barrier and attempt frequency (in the inset) on the strain
s. The power-law dependence of the barrier is evident.

2(b). It increases with strain until it reaches a maximum and
eventually decreases as s, is approached.

B. Numerical simulations: Periodic chain

In this case, shown in Fig. 1(a), all the bonds of the peri-
odic chains have the same binding energy e=1. Figure 3(a)
shows the dependence of the logarithm of 7 on the inverse of
temperature for several values of strain and several tempera-
tures. Again, the straight lines shows that breakup is a ther-
mally activated process. The inset of Fig. 3(a) shows AE(s)
vs 5. Again, there exists a critical strain at which the barriers
disappears.

We show in Fig. 3(b) that the energy barrier varies as
AE~ (s—s5,.)% close to s,. A best fit of these simulational data
gives 5.=0.115+0.005 and a=3.5+0.1. The behavior of the
prefactor is more complicated. Initially it increases and
reaches a maximum as shown in the inset of Fig. 3(b).
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FIG. 3. (Color online) Simulational results for the periodic
chain. Different colors correspond to different applied strains. In (a)
the dependence of breakup time on temperature and strain is pre-
sented. The energy barrier as a function of strain is shown in the
inset. In (b) we show the behavior of the energy barrier and attempt
frequency (in the inset) on the strain s. The power-law dependence
of the barrier is evident.

For both the periodic and weak bond chain, the behavior
close to s, is very different from the linear dependence usu-
ally expected and on which the model of Ref. [8] is built. We
now present mean field models that explain these results.

III. MEAN-FIELD ANALYSIS

The breakup of a chain can be approached through an
effective potential that describes rupture [20,23,24]. The po-
tential is built around the idea that the molecule breaks lo-
cally at a single specific bond [20]. During breakup, one of
the bonds is stretched by an extra amount ¢ while the other
bonds relax according to the prescribed value of the chain
length. The complete breakup process can then be described
with the potential Ux(s, ), where s is the prescribed strain
of the chain and ¢ represents the increase in strain for the
breaking bond.
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This potential typically has a metastable character. There
is one minimum ¢,,;,, located near ¢=0 corresponding to a
chain which is not broken. This state is separated from a
continuum of values of ¢ (corresponding to a broken chain)
by an energy barrier, with maximum located at ¢,,,,. These
points are found by the condition

U .g(s, P)

=0. (8)
(9¢ ¢=¢)min’¢max

The energy barrier for a given strain s is then

AE(S) = Ueff(sa ¢max) - Ueff(s7 ¢min) . (9)

A zero temperature, the transition to a broken chain oc-
curs when the energy barrier disappear. At this critical strain
s., the energy barrier goes to an inflexion point, defined by
Drin= Prmax = @, and the condition

&2 Ueff(sc’ ¢c)
P

At finite temperature, the transition to a broken chain
takes place by thermal activation over the energy barrier. The
time 7 required for such transition is given by Kramer’s re-
action rate theory, Eq. (7), with the attempt frequency

=0. (10)

Q( S) = M , ( 1 1)
2y
where w, and w, are the vibration frequency around the po-
sition of local minima and maximum of energy. Equation
(11) is the overdamped approximation of Kramer’s result for
the attempt frequency [25].

If the load on the chain increases at a constant rate, the
energy barrier decreases continuously. Due to the exponen-
tial character of the activation rate, breakup will occur for
strains s close to the critical strain s., and this even at finite
temperature [26]. In the critical region (s.—s)/s.<<1, it is
possible to obtain easily an accurate approximation for the
effective potential, and hence the activation rate. We define
§=1-(s/s.), and expand the effective potential U(s, ) in
deviations d¢p=¢p— ¢, and the small parameter 5, from which
the energy barrier can thereafter be calculated. Analytic ex-
pression for the attempt frequency on § can also be computed
by expanding the second derivative to first order on 5. We
now present the mean-field potential appropriates to both
cases.

A. Attached chain

This case is reprensented in Fig. 1(b). The chain is sub-
jected to the total strain s, which is carried by both the weak
bond between atoms i* and i"+1 and the cantilever between
atoms i"+1 and the first atom of the setup i,. Without fluc-
tuations, the total elongation of the two active bonds is s, of
which a fraction f is taken by the AFM-chain bond. An ap-
proximate estimate of f is obtained by linearizing the
Lennard-Jones potential, yielding f=k,a’/72¢. The path of
rupture is parametrized by the quantity ¢, describing the ex-
tent by which the weak bond length deviates from a+fs.

011918-4



SCALING IN FORCE SPECTROSCOPY OF MACROMOLECULES

0.15

0.05 \
=
[
)

-0.05}

s/s.=0.33

-0.15 +
-0.05 0.15

0.4

s /s.=0.33

0.2

AN

] .
-0.2

-0.05 0.15

s /s.=0.60

0.35 0.55
¢

FIG. 4. (Color online) Dependence of the effective energy on ¢.
Black and red lines correspond to low and high tension respectively.
(a) Periodic chain. (b) Chain composed of a weak +harmonic bond.

Equivalently, ¢ corresponds to the deviation of the spring
from a+(1-f)s, where (1—f)s is the strain of the spring in
the harmonic approximation. The potential energy along ¢
reads

Uh )= 20 -5~ 9P+ Ula fs+ ). (12)

Figure 4 shows how the effective potential for rupture
changes when ¢ is varied under two different tensions. Low
tension is shown in black while high tension is given in red.

Numerical resolutions of Egs. (8) and (10) show that the
critical values s./a=373.7 and ¢./a=0.071. An expansion
around these values then leads to an energy barrier

AEM3) = Eg52, (13a)

Q'(3) = Q657 (13b)

where E,, and () are given in the footnote [28]. The value of
s. and the y=3/2 exponent for the barrier height are in good
agreement with the values obtained by numerical simulation.

B. Periodic chain

This case is characterized by the constraint of fixed chain
length (see Fig. 5) and the energetics of this system is de-
scribed by the effective potential
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FIG. 5. (Color online) Mean-field description of the breakup of
a periodic chain of atoms.

Ub(p)=Ula+s+¢)+(N- 1)U(a+s—]%)'

(14)

In this case, ¢,,;,=0 is a minimum for all values of the
strain. Since this minimum is fixed, it implies that ¢,.=0, and
the critical strain is simply related to the point at which the
single-atom potential becomes unstable

d*Ula +s.
dUa+s) o

ds? (13)

In the specific case of the Lennard-Jones potential, Eq. (2),
this gives s,=a(13/7)"°.

Due to the particular form of the effective energy of the
periodic chain, '*"U%;/ d¢pds"=0 for all n. Therefore higher
order Taylor’s expansion of Eq. (8) has to be carried out and
the resulting scaling for the periodic chain becomes

AEP() = E5 3, (16a)

OP(5) = QF,

where E, and (), can be simply expressed [29]. The expo-
nent in Eq. (16a) is similar to that estimated in the simulation
(namely 3.54), and likewise for the value of s,.

(16b)

C. Crossover scaling

A crossover scaling function can account for both limits.
Consider the parameter = U,/ d59¢ which characterizes
symmetry: =0 represents the periodic (symmetric) chain,
while finite ¢ corresponds to the assymetric (weak
+harmonic) case. Expanding Egs. (8) and (9) to second order
in §and ¢ gives the scaling form for the energy barrier in the
limit of small 5 and small ¢,

Ey(1,5) =5 g(57), (17)

where the scaling function obeys g(y"—0)=1, and g(y"
— o) ()2, in terms of the scaled variable ¢ = /5 3. The
proportionality constants and the form of g are dependent on
the derivative of the energy computed at s. and ¢,.. This
recovers the previously obtained symmetric and non-
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symmetric cases in the appropriate limit. Although Eq. (17)
is more general than Egs. (13) and (16), it is preferable to
work with these two scalings separately (this is done in the
next section).

Notice that by adding a different bond type to the period
chain (symmetric case), 9'*"UP/d¢pds"#0 and we regain
the scaling of Eq. (13). In force spectroscopy a different
bond (usually harmonic) is required to probe the molecule.
Therefore one can say that the scaling of the periodic chain
made of equal bonds is not appropriate to describe these
experiments.

Finally, we note that Egs. (13) and (16) are independent
on the type of potential used for the interaction between par-
ticles.

IV. DYNAMICS OF BREAKING

The situation of interest for force spectroscopy experi-
ments is when the length of the system is increased at a
constant rate r [i.e., s(f)=rt]. In this case, the chain ruptures
at a relative strain s with some probability. Assuming that the
breaking of the chain itself takes place on a time scale
shorter than any other in the problem, the probability that the
chain has not broken at time ¢ is

t
W(s(1)) =exp(—f T‘l[s(t’)]dt'), (18)
)
where 7(s) is Kramer’s rate [Eq. (7)] for the stzatic strain s.
The probability distribution of breakup is simply P(s)
=—dW/ds and can be used to obtain the average strain (s) at
which breakup occurs. This average strain is given [27] by

kT\'"? 1(kT*7\ 5.0
<’s‘>=<—> 1n1’3[—<—>—s‘ 0}, (19)
E() 3 E() r

for the periodic chain. E, and ), are defined in Eq. (16). For
the chain attached to an harmonic spring and containing a
single weak bond, it is more relevant to express our results in
terms of the force F, related to the stain s by

F(s) = ky(1 — k,a*/72€)s. (20)

This is a reasonable approximation for the force since the
spring is much softer than the nonlinear bond. If we define

f=1-F /F,, the probability distribution of rupture force
reads

- . 20°F, =
P(f)=Qfmexp{—Eo]?3/2—gTe_Eﬂfm}, (21)
0

where F.=F(s.), Q"=Q/r, r=dF/dt, and E,=E,/kT.
From this distribution, average breakup is given by [27]

<f>_<E0> In 3 EO r ’ (22)

where E, and () are defined in Eq. (13).

To derive Egs. (19) and (22), quasistatic equilibrium was
assumed: the mean time of rupture was assumed to obey
Kramer’s equation at any time. This is justified [21] since
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experimentally a significant increase in the length of the
chain occurs at a macroscopic time scale (determined by ex-
periments and ranging from milliseconds to minutes) which
is much larger than the correlation time of molecules in a
liquid (~107% s). Therefore, at any elongation of the chain,
the molecule vibrates several times ensuring equilibrium.

Now we present additional simulations relating the scal-
ing given in Eq. (22) to a typical BFP setup. Here, the length
of the chain composed of weak+harmonic bond is increased
at a constant velocity v: the last atom of the chain is kept
fixed while the position of the atom representing the tip of
the AFM [see Fig. 1(b)] is given by x(¢)=x,(0)+vt. The
dynamics is determined by Newton’s Law until the chain
ruptures. A typical simulational result is presented in Fig.
6(a). Here the force on the spring is shown while the mol-
ecule is being stretched at v=2.7X107* (in units of a/7,)
and T=0.02 (in units of €). The force increases until it drops
to zero, indicating rupture. The cusp occurring right at rup-
ture is a typical experimental results of AFM pulling experi-
ments [17] or other stick-slip phenomena [12,14]. Note that
it is not due to any kind of singulatity in the interatomic
potentials but only to the fact that rupture itself is a very fast
process compared to the elongation of the chain.

The distribution of breakup force is illustrated in Fig. 6(b)
for an ensemble of 1900 chains. These simulations were car-
ried out at 7=0.02 and two different velocities v=0.01
(squares, shown in red) and v=0.08 (circles, blue). Lines in
this figure correspond to the analytic result [Eq. (21)] and
symbols are results obtained from simulation. A good match
between simulations and analytical results is observed. We

see that the mean force ()7} of rupture depends on v.
To illustrate this dependence, we perform some simula-
tions using ensembles of 1000 chains at three temperatures

and various velocities. The mean force (f) of rupture is ex-
tracted from these simulations. We note that Eq. (22) pro-

vides a temperature independent scaling by plotting (f¥2/T
in terms of In(7/v). Within this choice of axes, data com-
puted at different temperatures collapses into a single line, as
shown in Fig. 6(c). The quality of the collapse in this figure
for the wide range of temperatures and velocities used in the
simulation validates the purposed scaling.

In the simulation performed at the slowest stretching rate
[the point at the left-hand side of Fig. 6(b)], each atom of the
chain executed on average ~3.3 X 107 oscillations around its
equilibrium position before the chain ruptured. If we con-
sider that each vibration is executed in 10~ s (the vibration
period of a molecule in a liquid), than this simulation lasted
approximately 33 ms, which is within the time range of ex-
periments. At the other end of the spectrum, only 640 vibra-
tions (or 0.64 us) were executed before rupture. While this is
outside the range of experiments, it is interesting to note that
quasistatic approximation remains valid at such a high load-
ing rate.

V. DISCUSSION AND CONCLUSION

The typical bond used for force spectroscopy experiments
is the specific bond formed between a biotin and a streptavi-
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FIG. 6. (Color online) (a) Typical force on the spring while the molecule is being stretched at v=2.7 X 1073 (in units of a/7,) and T
=0.02 (in units of €). The arrow indicates rupture. (b) (Color online) Normalized probability distribution of breaking force. Simulational
results are indicated by symbols. These simulations were performed at 7=0.02 and v=0.01 (squares, red), v=0.08 (circles, blue). Curves
correspond to analytical result. (c) (Color online) Validation of the scaling form, Eq. (22).

din molecule [4]. These experiments are usually performed
at room temperature (kz7=4.1 pN nm™') and the spring con-
stant used to characterize the membrane of a BFP lies in the
range 0.1-3 pNnm™!. The binding energy of the specific
bond is €~ 50kpT=205 pN nm and its bond length is as-
sumed to be of the order of nanometer (¢~ 1 nm). If this
bond were Lennard-Jones-like, its stiffness would be
72€/a*>=14 760 pN nm™". In this manner, the stiffness of the
membrane is 10 000 times smaller than the stiffness of the
specific bond. This set of parameters correspond to the blue
circles in Fig. 6 which falls in the ramped creep universality
class discussed in this paper. Dudko ef al. have also proposed
the same scaling for force spectroscopy [18]. In their work,
they use Morse potential to perform simulations and validate
their scaling [which is equivalent to our Eq. (22)]. This pro-
vides additional support for our universality argument: The
proposed scaling is independent of bond type.

In summary, we modeled the rupture of a specific bond
which is being stretched at a constant rate » and temperature

T. We showed that if there is just one type of bond being
stretched, the strain at which the molecule ruptures scales as:
s~TY[In(T"3/r)]"3; when at least two different bonds are
stretched, the molecule ruptures according to: f~ const
—T?[In(r/T)]?3. Since in force spectroscopy experiments
there are at least two types of bonds being stretched (bonds
of the molecule and the spring of the BFP), the last scaling
should be used to describe these experiments and to extract
the relevant parameters from them. In order to test our results
experimentally, it would be valuable to probe rupture in an
extended range of temperatures.
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